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I,-.IS_.mz/.,rZ

_his ]r_ter.iml_F,ort 4esccibes the work performed under Contract No.

: , ', n(Lr..,,.1...... J. ),._ _I1 t,h_ period 22 December 196_ through tO SeI,tember 1965.

"?heorcblca] . ,udies include the development of a ma_hematica! model

of _. [,cz i"oP.:_nr,,.,; ,2,-.T'.'L£Oland monitor±ng system, development of techniques

for predi(;t._on and cstir_atio_, and a description of decision methods and

cri ter__.

.. r4ApplJcalion:_ ,'£ tr;Jinable log_, have been developed in the areas of

com_utation and control. In the area of computation, Monte Carlo type

methods and the solution of simultaneous equations have been investigated

using stsiist_cql switch techniques.

In "{d'Utio'u_t,h'_eeapplication problems are presented. The selection

" of one of these problems by NASA will be the basis for the simulation in

the second phase of the program_

1.2 IIistorica] Background

The study of trainable networks started with the ±nvestigation of

neuron-like electronic elements, especially the ARTRON (artificial neuro___n).

The objective of tDat stud2 was to determine if these networks coulc be

employed as engineering tools. This work included study of:

a. methods of ir_formation handling

b° methods of network interconnection

,;. methods of network cor_struction

d. me Lhods of efficient use of redundant circuits

e. th_ theory of the organization process

f. the training criteria.

f
" 1
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b,," /dill , ,.. t _.::na_,]._ ],H_Lca]. network that ac,"elts l,w,,, lr,,Lica!

j,',_,'! _ :,_L.I ._._ f ' :":n ;,,<-] !:) _,£o;¢i,4e any loLical function of the inpul,

•,,'_._'i.....b'..-o i _,_r;,< i,':f.ram of this davice Js shown in figure 1-].

'{h"::._ d,_',,a,' e i', u .i";'r,:i..imF] f-,menl,atJ on of the logical equat__ on

_' _._t_ioi:i._alinputs and C the logic&! oL_tp,lt. Awhcra A_ i] r-,! i',_"..._.- ,,,, ,_

. , ....._tJ._hedby selecting a suJtabl_ set ofgiver "]',,]ca]t,_'v.',i,]_m is e '-'_ _""_

v_]_c5 ( j -"t,_ ]). _!_c,_;e values correspond to the positions of the

,_;tat t stic a] ,<_r._,_..... _ " shown in the figrure. For example, the function

can be obtained b2 le_t:tng

2 3 -' i

This corresponds to rlosing switches $2 and S] and opening switches S1

ar,d Sh.

Initial studies lesd to a more general concept termed SOBLN (Self

Orga<izil,i(B_nary ],;)_._i(.'a]Network). This technique provides a general

trair,ab]e l,':giea]network (TLN) _,..i.L,_:-:,_',:,utsand M-outputs, The N inputs

are treated by i'orr;i.ngthe 2N minterms and directing the signals to 2N

statistical sw_ t_'r,_s. In a manner similar to that used for the ARTRON_

the 51,alistica] switch outputs are directed to an OR gate to i'o_n the

uutpuio The I,ioutF,ut._ are formed by providing a set of (2N) switches

and an OR gate for each _mtpat.

2
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Fig_re _-i Two-Input, One Output TLN
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The, s_:If'orgar_nzing network is formed by the a_dition of a goal

c.ir_'_:it.T_:i,._titre:it _enerv_tes training signals termed rew_rd/'punish

s_nals _.:_the statistical switch in or4er to bias the switch F.robabjlity

of clost_reo Inputs t,othe _oal circuit sre signals related to system

pc,rformar:ceo The goal circuit then directs Che TLN organization to satis-

fy the g._yen oojc.::.t,ive_

A_.aiysJs of 1,_eorganizat,ion process is based on a state representa-

tion of t.heTLN (_ fir,i-_o s+,.at.emachine) resulting from the method ,'f

constl,u,'.,t.i,:n,qr,,da transition matrix resulting from the goal circuit

f_mct.i,on. The !et,al process can be shown to be a Markov process and "is

developed in _,t,ai! in Appendix B.

The _,revlous work was largely directed to the training of the TLN

to a logical co.nnective. This work included development of the general

theory as %_.ellas specific apr_lications. The work under this contract

is concerned wit N the application of the TLN to solve decision problems.

Th_ results of this work is presented in the subsequent sections.
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- ,,',_,_-.,_:, c_;,,t_.d-.,_tha _iven s'-_tem is taken to

, ,,m. it is distinguished frn_. other

• • • I...._._th,_.rsis always _.kno,.,n"r'ot_Im" r._n_e'J,L?,l' _J "'. " 6 "r ,L',F1 .]_'.q "_" _

... .. _ ,', , ..,' ..'.,_ ,,'..,_"_;,":::. ,.";._% £r._cuently, interest is centered upon

;hq , b'...r','_:,.., , -_:,t .:<n_'_" of this perforaance. A performance vector

is an ,-.r,te-_'e,:i . ._,, .:,f' :'-..-.'[, pe_'formance variables• In this light, Der-

£or_arJce of ;,__...._ ,_,. _'"_',,,,,could correspond to its vector r.m.s

,icviati,,m:_fr:_m,_ ,_.ivenfLJ crltttrajectory. Likewise, the performance

of an ,:n,;iJ',.,.,:_nt.:,i. control '._7;'_s t:.m ceuZd correspond to the partial

;u .... sure devia,t_ens from a _'iven temperature dependent _,,Jrm.

In Fen,-_ra],o__-f,or,,:anceis a function of various random variables.

It J.sitself_ t,heret'ore,a -::_dom variable. Hence, stai_:tical technioues

can b_ apolied to e:_tablish _,he ol:ooerties of this oerfcr'_ance. .2recuentlv,

control must be indirec +., im,<_Iv_.,ngprediction or es!_ _:_.ion of performance,

experJmentatlc,n_ an_ control decisions.

A b!_,.-kdiagram of one such a performance control system is provided

i'_-ri.[lustratU-_ [: fi___re 2-]. The system considered is shown involvin_

_.in_tq_,,i.._.:_,:_,.[-,'__':_:-;_.,embehavior is subject to control inputs which

.....n_. _i,. : _. ,,'_r,-oa5 time t . Other attributes of the system can

..e r_,, ::_ _,_.,(', ::_. _._,.,._ i., d,_,_nated as the measurement vector

%

: , i,. , . . Xr(t ))x[tr- ':'h. n" ' " ' n

_'_.eh,,_L_iqass_,n, t i_.n :_ ti_at future performance at t_me Sn+I is some

5
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.[n;;_:.t ", " ,, ' _ieasmed qn
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Figure 2-I A F_r_'or_anceControl :rid Monitoring System (Illustrative)
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functien of taese attributes at time tn,-_ (tn). That is, the assumption

is t_at the p_rformance variable can be predicted. The prediction tech-

nicue employed can be made adaptive, oy an updatin_ procedure shown as

feedback to the psrformance prediction.

!_en the predicted performance falls out of tolerance, control deter-

ruinationexperiments can oe _mplemented. This would involve chan_ing control

par_,_eter:_in s_ch a _my as to actually c_nge the system parameters, X(tn),

whereby the Fredicted performance would be chan_ed. Modification would

continue until predicted perfornance falls back within tolerance. A more

orobable approach _ouAd be to perform experiments which establish distri-

butionalproperties of X(tn), restrictin_ the class of modifications that

are actually implemented. These can be selected on the basis of statis-

tical theory.

The major elements of the above described performance control system

invelve adaptive prediction and decision theory. These will be considered

in greater detail below.

2.1.2 Prediction and Estimation

Various techninues for estaOlishin_ the performance prediction rela-

tionship

= q [_(tn) ]qn+l

have been developed and are described in the literature. One of these would

consider performance,q, as being a discrete valued function; that is

i
q_ q , for i = 1,2, ..., n.

The r-components of the system measurement vector,_(t), would be viewed as
L

the coordinates of a point in r-dimensional space. If one knows the distri-

- butions, P(_lq), the a priori probabilities, p(q), and the loss matrix

?
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(correspondingto an estimate of the relative penalty associated with

assigning performance qi when qJ should be assigned) then the selection

of q for a _ven measurement x can be made on the basis of minimum

(i1-(6)
expected loss. Other selection criteria can be used, however.

The technioue is termed adaptive when either the required distri-

butions P_lq) or the loss matrix must be obtained from the incoming

data. (The a priori probabilities, p(q), may or may not be known.) If

measured-performancewere noise free (i.e., the same as performance),

then the problem becomes one of "supervised" learning. More generally,

however, measured-performance is a random variable about whose distri-

bution little may be known. This makes the problem here much more diffi-

cult.(7) Most of the work available, avoids some of this difficulty by

assuming measured performance to be normally distributed. Furthermore,

the form of the distributions p(_Ig) is _enerally assumed as known.

This last restriction could be removed in many cases, however.

Various alternative approaches can be applied to adaptive perfor-

mance prediction. A familiar curve-fitting technicue is described in

Appendix4 as applied to prediction. Here, the performance, E(q), is

represented by some given functional form

E q(_n+l) = tn),e(tn)

which is linear in e, where x is the measurement-vector (an r-tuple) and

_is a vector of unknown parameters (an S-tuple). These parameters are

selected so as to minimize the sum of the squares of the deviations of

measured from predicted performance over the discrete time-variable.

If a fixed set of parametersewere desired, the welghts would be set

8
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to _nzty. Vaiu_s _oss t_an unity permit time-variation in the parameters

e" The updating procedure is shown established by a very simple iterative

process, and a weil-kno_,mtheorem applied to discussing the distributional

[,ropertiesof the parameter. This distribution over the predicted perfor-

mance is important in _orming control decisions, as will be seen in the

next _-ection.

2.2 Decisions and Decision Criteria

The simplest form of decis4en consists of selecting an action from

a set of alternative actions with perfect information about the various

consecuences. Formally, one assumes a set of states-of-nature

_'_'¢J2' ""_(_r] and a set of possible actions A =[al,a2, ...a3 .

A loss matrix is assumed, ((L(i,j))), whose elements L(i,j) are the loss

associated with selecting action ai while nature is in state(J.. WithJ

perfect information, one knows both t_e state-of-nature and the loss

matrix. A rational decision would be to select t_at action which yields

the beast loss.

With less perfect information, one might be restricted to knowing

the cost matrix and only the a priori probabilities of nature being in

state j, p (.j),for j --l, 2, ..., r (rather than the actual state of

nature), in soch a case one might make a selection on the _asis of its

vieldin_ on the average, the minimum loss. That is, the expected loss

associated with selecting action i is given by,

r

1 (1) L(i,j)p(j)
j=l

£
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wherein one would select that action which minimizes_(i).

Consider now the case where one is _iven the loss matrix ((L(i,j))),

hut has no infor_ation on the probabilities over the states-of-nature.

One method of establishing a decision is that employed in name theory.

Here, one selects an action from a probability distribution over the avail-

able actions. This distribution over the available actions is established

so that or,the average, the maximum loss (sustained for any possible distri-

bution over the _tes-of-nature) _ill be minimized.

A more useful class of decision problems extends the above considera-

tions to include information obtained from experiments or observations.

These are used to modify the established probability distribution over the

states of nature. For example, let the observation De some parameter (or

vector)_. Let the conditional probabilities p (_I J) be known for each

state-of-nature, j. Let t_e a priori probability that nature is indeed

in state j, p(j), be also known. As before, let the loss _atrix be given

by ((L(i,j) )), where the index i ranges over the set of possible actions

and j ranges over the set of possible states of nature. For such problems,

decisions are now based upon the observation x . In fact, a decislonrule

is defined as any function mapping the observation_into an action i,

i-d

The Bayes decision criteria (applied against the _ priori distribution

over the states of nature), is one that yields the minimum loss on the

average. (That is, it is a criteria for selecting a decision rule which

minimizes the average loss.) Its name derives from the use of Bayes

theorem in probability which is used to derive these deci¢ions. It can

i0

n nu_u
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'' i

_ ,l,,L n,_ minimum avera,,o I_ :s critezjonimplies that

¢_n__:;qo1_i:i i ,._d_tJon i when

i' r

j =L j --i

for ai.l £or_:.:ibl_ac_j.ons k. (%=his is essentially the criterion mentioned

in !iscuss]n_ l'i'cr]icb,onand e'stJmation in i_-dimensional space.)

There are va_'icus other criteria that can be employed. One of

these is t,n',:_eNman-Pearson criteria, as _eneralized to cover cases of

more ttJan t_;opossible actions. ._itn only two possible actions, say 1

and 2, the decision maker can hypothesize that action 1 is called for.

He could then test this _ypotnesis and make two different kinds of

errors. An error of the first kind would De made if flis observation

-)

x led him bo Jeiect action 2 when action I was called for (i.e.,

when the faise!y z'_._ectedhis flypothesis). An error of the second kind

would be made it"his observation x led him to select action 1 when action

2 was called for (i.e., when flefalsely accepts his hypothesis). Whereas

it is desired to minJ.mize the probability of both of these errors, this

is not in _eneral possible. Normally, the decision rule which decreases

the probability of one of these errors will increase the probability of

the other t_,pe of errors. The Neyman-Pearson criteria calls for selecting

that decision rule (function, d(x), which maps our observations into a

selected action) which minimizes the probability of an error of the second

kind, subject to ti,erestriction that the probability of an error of the

first kind z'emainbelow some pre-assigned value. (9) The generalization

to the case of more than two actions can be accomplished in several ways.

ll

m
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(to,iI)
In one of these , the probability of correct decisions is maximized

_±_t> of certain incorrect decisions are constrained to

being less [,nan or eoual to some pre-assi_ned constants.

71thenmore than one observat_ on or experiment can be made, it be-

comes important to establish a criterion for stopping the process of

experimentation (or observation) as well as the decision to oe made once

this ha:_ _toppe_i. Tnz_ is re_erred to as secuentia! decision theory and

analy sis.

(12)
Wald developed the secuential probability ratio test (SPRT) for

binary type decisions (accept or reject a hypothesis), terminating experi-

mentation at some point beyond which a Neyman-Pearson type of criterion

is satisfied. Tha_ is, numbers corresponding to acceptable maximum

probability of errors of ttle first and second kinds are first selected.

Experimentation ceases and a decision is made only when these conditions

are satisfied b7 one of the two possible actions. His _eneralization of

this test to multi-yarned decision functions was made on the basis of

minimizin_ the risk of making a wrong decision.

The Bayes s_euential decision model postulates a given set of experi-

ments (or observations), which can only be performed in the given order

(i.e., experiment i ,.ust precede experiment i + 1). These experiments

can be similiar to one another or completely different. If the set of

experiments is £inlte, _en it is called a truncated sequential theory.

As with non-seq_ential Sayes decisloning, a loss matrix ((L(i,J) )), a

set of a priori proba_)ilities, p(J), and a set of conditional pro_aoi-

P(_I j) is presumed. Tim nature of the observation vector,£ities,

x, is _at of including measurements made by all the experiments. Hence,

12

| n

1966010296-016



clcc:_:iorlr_m'.,;_,,,. _ r -,sis of sav n experiments can only use the condi-

tional _",i,;vrJ_:,['_f observation-vectors whore first n-coordinates only

_ro l[rlc,vn,ihat is, olle_st average t_e expected loss over all coordi-

nates ..... "cocre_,_,_alng Do experiments which have not yet oeen performed.

The last reeuirement is to place a cost on each experiment which_ in

deo,_r.....ugon Lhe outcome of Lhe experiments.general, _,4 _

The soiu_.bm ,_,anh9 shown (H') to be obtainable by taking a dynamic

programming type of approach and _,Torkingback_Tards. Essentially, experi-

mentation _s to t_eco_tinue.d only _,,_henthe current Bayes risk (established

as with non-seQuential decisions to be average loss anticipated on the

basis of current estimations of the state-of-nature) is _reater than the

expectatic.n of Loss if experimentation continues. The detailed solution

is Riven in ApoendLx C.

For control or diagnostic purposes, this form of decision theory

is not sufficiently _eneral._., Consider, for example, where a process is

established as being in so_e one of three states (i.e., three states of

nature) requirir4 immediate action. Three tests, labelled el, e2, and

e3 are asm._med available, l_t these have costs CI, C2, and C3, respec-

tively. In ad4ition, let results of experiments ei provide coordinate

xi which is dJ_t,rl ,_,e'J:,s shown in figure 2-2. The expected loss and

actual decision w_'ll depend upon the order in which these experiments

are performed. For example 9 if experiment eI were performed first and

provided the observation xI = x_ (as shown) then one might cease experi-

mentation and take that action corresponding to nature belng in state

1

_J= (_I" If one obtained xI = Xl, then experiment e2 would seem the

1966010296-017
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Figure 2-2 Hypothetical Conditional Distributions

for States of Nature_ = _ i, _A_2' _3
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2

best experiment to oerform next. If one obtained xI = Xl, then experi-

ment e3 might be be_t to perform next. Naturally, this ,,mulddepend on

the v r_ous less elements assigned. (The example used here could correspond

to problems of diagnosin_ the breakdown of a large system, ,_hereco_ts

could be taken to represent time.)

This eNtenston and generalization has been accomplished at Melpar,

and is described brSefly in Appendix C. A_ain, the dynamic programming

type of almroactJis employed. At each sta_e of experimentation, the

risk associated _,_thmaking a decision is compared w_th the risk associ-

ated _th makin_ a decision is compared _ciththe risk associated with

each of the various possible continuations (experiments). If the risk

associated with making an immediate decision is less than that associ-

ated with the possible continuatSons, then action is selected on the

basis of the available data. Otherwise, continuation proceeds with

that experiment which does not provide minimal risk.

This new procedure includes considerations _ere the performance

of an experiment modifies the conditional distributions associated _ith

other experiments. This would be expected to occur in many cases where

the experiments actually perturb the process under consideration.

However, one should employ this procedure a_vtime the distributions are

not known to be independent.

To illustrate the difference between fixed ordered seeuential

theory and variable ordered sequential theory, consider the following

simple search problem. Let there be an object which is randomly placed

into one of eight boxes (so that the probability of being in any of the

boxes is 1/8). 15
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Let experiments ej, j ffiI, 2, ..., _, gives rise to results

xj = I, if object is in box J

= O, l_ otherwise

Let these experimenbs cost one unit. Let experiment e9 give

x9 = I, if object is in boxes I or 2

= 2, if object is in boxes 3 or 4

= 3, if object is in boxes 5 or 6

= 4, if object is in boxes 7 or 8

and let it _'ost2.5 units. If the loss matrix is such as to reouire a

correct answer (with zero loss), then the minimum average loss for any

fixed order of experiments would place experiment e9 last (although all

experiments would terminate prior to this point). With variable order-

ing of the experiments, the optimal procedure calls for performing e9

first. It would produce an average loss of only 3.5 units as contrasted

with the fixed order minimum boss of 4 units. The important point illus-

trated here, is that the initial experiment cabled for by the variable

ordered sequential theory is not obtained trivially by considering the

results of any fixed orderings of the experiments.

16
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o.3 Co_,p.utatJ_nnlTnchniques

2.3.1 Introductor_ Discussion

Thrro _re sever_l areas in which trainable logical networks (TEN)

apply to performance control and monitoring systems similar to that de-

scrxbed in the preceedjng section. Tts utilization rests upon c_rtain

key properties of such networks. One property is that they are finite

state devices whose only memory consists of what state it is currently

in. Another property is that they can be configured to behave as stochas-

tic devicps which can be analyzed as a Harkov process. It appears natur_l,

then, to consider their application to such computational techniques as

Monte Carlo and Simulation.

Other uses of TLN, however, have been studied previously. One of

these is their use in obtaining high reliability in systems. Another, is

in their use as control elements. This latter work, although not described

here, will be considered relative to its application to the study problem

selected. This section will concentrate on the use of TI_N'sfor computa-

tion.

The basic element of the TLN, referenced as SOBLN, is a k-level stat-

istical switch. This is simply a switch which can attain ar_ of k states.

Fach of these states corresponds to a probability of the switch being

closed. It is this element which is fundamental to the com_tation process

described below. The fact that these devices are so flexible, so amenable

to high-reliability coz,oidor_ti_,s, nn_ consist of this common element

(wherein it is amenable to conce_ts of micromir_aturization),provides

reason for the investigation of their utility as basic computing elements

l?
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_s wel] as their us_ in probl_ms aI_Lenabl_to solution by other th;_nMonte

Carlo techniques.

2.3.2 Basic Arithmetic Operations Usin_ Statistical Switchos

There are several methods for implementing the statistical switch

to perform the multiplication and division of two numbers. The first

method consists of converting both numbers into proper fractions by a

scaling operation. _ach number is then associated with a probability

setting of a k-level statistical switch. The outputs of the switches are

sent through an AND gate (alter,atively, the switches may be merely placed

in series). Since an n-bit counts, is the basic element of a statistical

swltch, the k-level switch is one that is capable of t:_kingon k • 2n

different probability settings.

A Monte Carlo pz_ ess is initiated with some number of samples, N,

taken for conveneince to be a power of 2 (say 2m) . The 1 outputs from the

above reference_ AND gate will increment an m-bit counter. For a large

enough m, one would ,xpect tha- approximately

P1 P2 = (number of l's present in the counter).
-(m-2n)

2 Pi • bias setting

To obtain the original, one merely shifts the counter m-2n bit positions

to the right. This is s scaling operation which, in effect, corresponds

to multip_ing by the square of the scale factor in the denominator.

Since the switches are independentp the AND function is represented by

P(_,B) - P(A) P (B)

18
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';heaccuracy ir_i,}_j:_;.'_,)_,LnCarlo computation can be analyzed on the

basis of the variance of a b_nomial distribution, given as

2
C- = NPq,

where

q =I -P,

and where N is the number of independent samples.

To illustrate this process, consider the following example:

Let N --1024. The product of 3_5 = 15 could be performed using k-level

switches, where

k = 2n = 25 = 32.

Then,

P(A) -3 P(B) 5= 32" =3_

P(_.B) = P(A) P(B) "- 15

Since m = 2n there would be no shift of the counter after the end of the

N samples. In genoral, howcver, one would anticipate much larger values

for m, which would require the above described scaling shift.

The division of a scaler by another scaler can be readily performed

by modifying the k-level switch to include a decoder which resets the

n-b_t counter at any integer r where r_ 2n. Thus, for the operation a/r

where r _ a we merely use the foreshortened counter k-level switch with

reset occurring on the rth pulse and with the bias level set at a.

19
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The second method considered for division J_volves the t_seoi a

closed loop feedback arrangement which adjusts the statistical switch

until it reaches sn eoui]ibrium about a mean, where the mean is

This switch is then multiplied with the dividend p(z) which is set in a

third switch. The rule for generating the transition matrix, correspond-

ing to the generation of the state with probability p(y), _s determined

by a combinational network such as the one shown in figure 2-3.

The output of the k-level switch, p(y), is fed in series to the

switch, p(z), whose output will yield the quotient (modified by ½), of

the form

e = p(y)p(z) - p(z)
2p(x)

The product operation can also be performed with the k-level switch,

k --n, shown as p(y) and one m-level switch in a serial fashion as illus-

trated in the following example. Let the product of the two numbers, say

3 and l_, be computed. Set the numbers in the denominators of two fractions

with a power of 2 in the numerator. Using the logic shown in figure 2-3

one needs p(x):_ ._. However, a different implementation could be used in

One can then sense the correct output.parallel to handle p(x) _z ...

Using only one k-level switch, we interrogate the first twice with a

counter reset at 3 and the second with the reset at %. This yields a

probability of 1 being p(1) - § " _ , as desired.

From the above discussion of the AND rule, one has

i m 1 " I_"

2O
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p(x)

_ P(Y) i

y

Figure 2-3 Stochastic Adjustment Rule

b ._ *___gl I ] '_ x

A L
.r

Figure 2-4 System for Solving F_uations
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Thus, when the equilJbri_m state is reached, the sampled value will be

15 with a variance which decreases with n.

2.3.3 Partial Differential E_uations

One of the capabilities of a SOBLN as a Monte Carlo simulation

device is in the solution of linear partial differential equations of the

parabolic ol elliptic type. We shall consider briefly only the parabolic

type because of its relevence to random walk and diffusion processes.

The Fokker-Planck equation, mentioned later, is a P.D.E. of the parabolic

type.

Consider the general second order linear partial differential equa-

tion with two independent variables;

x _ )x3y

If (the discriminant) b2 - 4 ac _ O, the equation is of the elliptic

type. Such equations commonly represent equilibrium situ,tions; an example

of which is the celebrated Laplace equation,

Diffusion and heat flow equations are o£ the parabolic type with

discriminant 02 - _ ac • O. They commonly represent situations with

unbalanced equilibrium. Two examples of this are the one and two dimen-

sional heat flow equations, described by

u . K _2_.. _,_ . _2u + _2u
V7,

respectively. 22
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The :,t_r_Jnr'i._!ro_'h to the one-dimensional exT_resion is separation of

vnrjnb!cs, y_t.i'li,_the solution

c]t _"u = e _ [a cosh t + b sinh t

A very useful means which exists for obtaining the solution of the two

d_m_ns,_oq_l e_-,_at.1,,n_is the Monte Carlo process, where we consider a

particle undergoing a series of random walks over a two dimensional lattice

r ')Forwith a tallied s.:ore correspon4ing to the state after t _ransi_lons.

an explanation ol this process, consider the following situation. Let a

particle undergo a sc.rles of random walks starting at (x,y) = (0,0) and

continuing over the lattice for t steps with a transition probability at

each point (x,y) associated with having the particle move to (x + l,y),

(x-l, y), (x,y+l), (x,y-l)o Let each of these transition probabilities

be equal. Assume, init;ally, that the transition probabilities are inde-

pendent of x a1_dy as well as the past history of the particle. This

describes a Markov process with xy states and s sym_netric transition ma-

t.'v. The transition matrix has non zero terms along the two diagonals

on either s_de of'the main diagonal, where all non zero terms are ¼. The

rest of the entries are O.

At each point on the lattice there is a probability function P(x,y,t)

of finding the particle at (x,y) after t transitions starting from (0,0).

To show the relationship of this £rocoss to the heat equation, note that

P(x,y,t) must satisfy hhe difference equation,

P(x,y,t+l) = ¼ P(x+l,y,t) + ¼ P(x-l,y,t) + ¼ P(x,y +l,t) + ¼P(x,y -1,t)

23
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Ti,_:; Jol],_,,, _, _:'.,.. i',,,, :'_',ct that, the [,_r'tJclo _l_;:t, have been at one of the

above fo.J)"l_.)a:iAt(,r._,nt time t in order to arrive at (x,y) at time t.l.

Subtr;act_nt;P(x,y,'h)±'roeboth sides and using the expression for second

differences, t,,c_p_ that

J:(z) -- f(x+l)-f(x)

ij0

,x '2'"
¢'/'_,,i 0..,_ ,.) -}f(x+l) +f(x)

Hence,

P(x,y, t+l) - P(x,y,t) = P(x+l,y,t) -½ P(x,y,t) + P(x-l,y,t)

+P(x,y*l,t) ° ½ P(x,y,t) + P(x,y-l,t)

+ EP(k,y+l,t) -2 P(x,y,t) + P(x,y-l,t)]}

This relates the first difference of P, with respect to t, to the second

difference, with respect to x,y. For the limiting case of a finer lattice,

the above difference equation is similar to:

This is the two dimensional heat flow equation.

If we keep a tabulation of the number of times the particle appears

in each state (x,y) for a range of t and divide by the sample size, we

have an estimate of P(x,y,t). If, instead of starting at (0,0), we start

at a point on the lattice (x,y) where the starting point is determined by

a distribution f(x,y), we have the initial function P(x,y,O) generating a

particular solution of the difference equation. 2h
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,"",, ,',.;:_d' I ' ., '._._"tr'_m',;_L.i:)_. _;rob._b]litieswe can simulate other

r_r,,_i/_]_e I../..i_! :!!'f'_;rY:ntk,,lecuations an% although the transition matrix

b_.:.)r,,s:_'_r_,_,,,_._,:,t,._r,.,c_:ple._,the analytical methods of section 3.2 and

2,3.)1 [_triz fr,,ve'r,don

A br:i_,_',l.'.s,'.:m,;tior_i_.._presented here o.fthe inversion of a special

type,o_'m_._t.rixc:;,_crut,'r'cdwhen concer_,edwith the control of Markovian

_ro..es.,...,:,, p_'ocedurewith a different implementation is pos-

:::_7,:_.__,.. "_-_._-".,._]...,using the resolvent expansion of a matrix. In

the section on npplicat';.onproblems dealing with Markovian procedures the

need for matrix inversion .; avoided by means of using the iterative solu-

tion of a set of ecuations. Thus, only the storage of a vector is needed

rather than a matrix.

!,lecan invert _ matrix of the form I-Q where Q is a stochastic matrix

with all e]ement_ qij _- O and where _ljqijZl for all i. To do this, we

extend the dimension of Q by attaching a first row and a first column to

it These a:"e__,el_ed so that the new matrix, A, will be stochastic.

As an ex:_mp]e,le+,

Q-

o

One then forms

1 0 0

A - I, 4
i 3
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"]'ILc_n_L:'ix.,'w._Ji ;_J._,:ysbe.:_tochust,ie( a.. - 1 for a]l ].and
j 1 C

• C) -'t 4e,_;eri.b<s a Flarkov process which js -{bsorbJr_f;, owing toai j

the sciertiep of'the elements of the eirst row, Because the clgen values

of Q _._;'cIts;; lh,-_,nvnibj, (I-Q)-I will exist and can be showrl to equal

I + q + Q2 _.. _ ;Ising analytic technio.ues such as the Z-t,ransform, one

-',"_,'fc.rm) t,r,es'..ateprob:,bilitJ_,sfor,enth traositAon, t.can ::new (in ,"_.,::ut_

in reference ,..''-...._s shown tn_L'" these probabilities can b_"directly

related t_ (I-Q)-i. That is, using the above defined Q, one obtains

This illustrates that we can allow a series of random walks to occur,

where ea'h time the absorbing state is reached the process is re-initial-

ized. A TLN (similar to LANNET, for example) can utilize 2N statistical

switches as memory devices, and thus have a capability of handling a

matrix of dimension N.

The random walk can progress in either of two ways. For the first

method, let one K-level statistical switch represent the transition matrix

with a single training rule generating the matrix. This configuration is

feasible for lower order matrices possessing a large amount of symmetry

and small number of non zero elements, such as the class discussed in

section 2.3.3. An alternate method is to mc]:_d¢ N extra statistical

switches J = 1,2,...N to this TLN. This arrangement allows each of these

switches to represent a state of the Markov process considered ana to have

a separate training rule applied to each switch. These are called "state-

switches". Such a training rule is merely a probability distribution rep-

resenting the respeci_,,v row of the transition matrix and i: _',_._l_rto

synthesize. 26
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,ne rqn,]or_:_alk carlprocee4 over this set of h switches, the re-

mairdng N? switches _rc _Jse4 only as tallies). A decoder can route a

tally bit to the proper memory switch each tJ_;o the process is in switch

j The switches _re _.,.o_ated with st._rting in state i end entex'ing

state k (switch (i,k))o These are activated when the random walk begins

in state i and are incremented (tallied) when the corresponding "state-

switch" enters state ko

2.3 .._ One Method of So]vin_ a Set of Simultaneous Equations

Consider the algebraic system of equations A x = b"_. Referring to

the implementation of figure 2-a one obtains the relation

z ,_gIb -AgIx

or

b = (A + _) x

in the feedback loop.

Thus

•r, I,-I --_

x = (A+_j b

- adJ (A + _ I) b
See ref. (16)

I

2?
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:Fn L!:.i,_; sJt,'_ion th_ sb:,'_)i:l.ity of _be ,';:/sl,ei_: _,,_ t u,_T.nnt._e,_ :i£'

_,_.'bri_ t_._.,-_p.,,;i!.iv_ ,_:ef_.:,jj_ ,, ,,;lr.,.::, ._1t ch_r:_e[,-_,.-i.:._l,.ic T'.)ot:; ,,ould then

have ne_.]ntivc_'ealT.nrf.s. _-tt,_e_'xF.enseof some additionnl computnt.ion

on_ cnn proceec] Jn '_simJ.!nrmanner when _ is not positj.vr definSte. .In

such cases, we.pre-mu]ti[,ly A by AT, obtsining

AT _,, T -_Ax=A b

This hss the same solution vector as the equation

Ax=b.

However, the multiplication of two matrices is rather cumbersome for use

by TLN.

2°3.6 Linear Difference and Differential F_uations

We now consider the stability of an autonomous system of linear

differential or difference equations. The system could be a vector-matrix

th
state space :'epresentation of an n-- order linear difference equation. In

the Markov Decision Process application, described in section 3.2,

the Jacobi point itermtive method of computing an optimal pol_cy results

in the following equation;

28
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_" t.

dk = Fk do where do = xI - Xo, dk = Xk+1 - xk

and where dk represents s vector difference which converges to zero as

the iterativc process converges to a solution. This convergence can only

be guaranteed when the latent roots of the matrix F are _ I. To show

this, consider the difference equation related to the abcve expression

dk+I _ Fdk with gJ.ven initial state do.

If the l_tent wctors are independent, we can apply a similarity trans-

formation to diagonalize F, as

F=PDp -I,

where

( D.p_IF P

X1

k2
0

- ff

k . ith latent root of F

0 "_ n i

Since

- (PD p-l)(pD p-l),pD2p-,

one notes that

m m
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_,k .._)k -i, P

1

k L)
k2 -j

-/ . P

0 .

-_ = Fk -_ -_0 and the process converges to a solution.Thus_ for large k, dk d,j

Yf the characteristic vectors are not independent then the matrix can

always be transformed into a triangular matrix.:

dk = R Yk

or

---_ m 1

Yk" R dk

Then

R Yk+l = FR Yk

or

.._ -ab

Yk+l = R'I FR Yk*

where

i

; D = R'I FR

is a triangular matrix.

$
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• _ * ,,:_ ai,::_yswr'ite D in thc rcrm _,.,'here) _ , ;;,_', .': t ::j,., ,?qiq

T: = D! " D2

._ r,.:_r__and D2 is a nil potent matrix (having non-zeroI "
D

e]er,ent.sonly to the right of the main diagonal). E,TandSng D" by the

' z,r,,,r:_,!_ theorem gives

D

DI; --D_ + PDiF'i D2 * - - - �D2'

Since D2 is niIpotent (all characteristic roots are 0), there exists a

_ P2
"_,_",_: such _h_. D2 = O. It is also e+ident thai for the diagonal ter_ in

Di, there e_ists some Pl whereby D?l will also be zero.

Other cozsiderations apply to the continuous time case. Here, the

set of differential equations

Q

x=A x

has solution

"_ At -_
x(t) = e x(o)

--..%_

_) ): + A _ + + _ . _ (0

:.,,,i,'hcan he e_.,.Juaf,edi_]a manne; Pcscr[bed in the litera_,Ire_

, ,:,om_.atat_,_n of the Inverse of the least S,guare Reeursion FormulaO__ 0 • ,, ,, ,, J

in the recursion rel_tion for updating a leasl squares estimate,

described in the Freceeding section, an expressiun of the form

31
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-3 .I ---" '-T P is Kno_:n

I-k+I : i k _ _/ J' '_

is encouv.tere,l, ..,.#_ore Pk is an n by n syT._,..,et,ri_c r_:abr'ix and _, is an n
(13)

by 1 colu_,n vecLor_ IT_.i_,g,zmatrix inversi._n ].efm_,a,we carlr_Fresent the

above as

' _ Fk_"-_k "k + I)'i _T PK

The above ex£.r¢usion is it:::_il'" to handle on a Monte Carlo basis since

the underlined vet.l.oz-vat.rix;'roduct _.T Pk :_pi:,earstwice and since }-.k_--_,

is the vector transoose of _T. Fk. Thus, TLN's could perform a single

vector-matrix /:rodu,ztin the fashion described earlier in this report.

Then, a dot product oFeration is performed to yield the expression

Pk -_ -_ _.o .he( T )_< , using ?n statistica] switches in the fashion _ ',:.:'.:,,. '

f}.r_,tportion _f a vector Iaatrix computation°

After incrementing this result by i, the resulting scalar (_T pk_ + 1)-i

is set into a single statistical switch consisting of a rood P counter

(described earlier) with numerator I° The bias probability is 1 .

This switch is placed in series with s]l switches in the TLN to obtain the

desired quantity

-_-_T

1 Pc_ Pk
L" _T .-' k

Pk'_ + 1

The quantity (Pk _) (_T pk ) is obtained by a vector-vector product result-

ing in a matrix. The elements of this matrix

32
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((aij)) = (Pk _') (,_.T pk )
I

can be stored in the switches themselves to minimize the amount of tile

input-output lo6ic_ Since

PK 8�=Pk " A

we can subtrart the _]ements Pij from aij and ct,angeits s'_gn,this opera-

tion being p_rfom,ed by a combinational network at each switch.

This tech.nique,combined with the matrix inversion method described

earlier, is somPtime_ a useful supplement to the standard schemes for

solving a system of equations.

J
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3.1 Trainable uontroller, Problem I

3.1.1 Problem ;tatement

Given that failures and/or changes in plant characteristics have

occurred in an automatic control system, c_n trainable logic be designed

to take over the control function by monitoring of human performance on

manual control of tze system?

3.1.2 Problem Motivation

Space flights to date indicate that man is one of the most reliable

components in the complex _rmn-machine system during space flights. In the

fature it is logical to expect that his capability to monitor space vehicle

s_gstems, perform control functions, and troubleshoot, make him a utility

backup for many existing subsystems in the spacecraft. With this in mind,

it seems reasonable to assume that his work load will vary _reatly depend-

ing on how well things are going. Further, it seems reasonable to assume

that the performance on tasks deteriorates if he becomes overloaded with

work. It is possible for trainable logic to relieve some of the burden.

Let us suppose that one of the many automatic control or regulator

systems fails and must be controlled man_ally. It is entirely possible

; that, while the failed automatic system is being controlled manually,

trainable logic monitors both the astronaut's control and the data upon

i_ which the astronaut is basing his control decisions. After a while the

trainable controller can signal that it is ready to make control po] icy.

It is possible, and under some conditions probabl_, that the trained

controller will perform better than the human which it has monitored.

f

1966010296-038



3.1.3 [iathe_atical /ormulation

_Temay set forth the followin_ framework of the problem in a

_eneral state notation.

Let x = (xI x2, ... x ) be metered system state variables,n

u = %1 u2_ "'" u be controller policy vector,m

(_)_ 0 a controller constraint,

G(x,u_t) = 0 a relation between control policy and

system variables, and

P(_,u) a performance index which is minimized by

proper selection of u(x)

Performance generally is marked:

P(x,u)A 0 satisfactory

or

P(x,u) _0 unsatisfactory.

For the case we wish to study we may assume that a policy u(x) has

been predetermined such that P(x,u) & 0 until a controller failure or plant

characteristic c_mn_e occurs. In the latter case it is necessary to deter-

'.= _ _.
mine a new control polScy u (x) such that P(x,u )< O. The new policy is

simultaneously determined bythe human and transferred to the trainable

computer (controller). Additionally, it should be expected that the

trainable logic gives some indication to the human when it is ready to

take over control.

To give more meaning to the general framework let us specify para-

meters, constraints, plant equations, costs, etc. Let the plant be a

35
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servo motor "_,ThJ.chJ.sadju_tJ.nqto co?_r_andi_n_,uts_r,Thicharc _teo £unct-_ens.

_y.lettin_ the tJ._einterw&s ,_et_,Teen_-_teochan_'esbe much _rc_ter t}_an

the system tJ_e constant_ the steps can be considered J_nde_endent4n t_me.

Nature selects any one from a numbor of plant eeuat"ons '_}__elect-

ing i and j in the _overnin_ differential ecuatJ.on

Y _ ai = k u r,y)j k

After a selection of (i,j) the control problem is to choose k such

that a perfcrmance index P is minimized. As a performance index let us

arbitrarily select an index which conserves both fuel and time.

t--t
p-_ f

t=t Clul + 1 _t
O

where tf-t is the time recuired to bring the syste_ output to the
o

input command.

As a constraint on the controllin_ policy, let us assume

(_)--I_14._ o
and actual permissible values

u = (1,0, -I).

Let

starting time t = to,

input _ = Zo,

output y(t),

error e(t)"Z_-y(t),

error rate _(t) - Zo " (t) - -y(t) for step input,

control policy uI = u(_,e), and

36
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differential ceuat_on $'+ al__= klU1•{
_overning error be

Startin_ at t = t the above variables are:
0

Z= Z
0 _

Y=Y,
0

e =e and
O'

O"

At t = tf, the error, the error rate and performance are:

e =09

6 = O, and

clul �( t=t

results from using u = u1

A change in the desired policy control occurs when the coefficients (a,k)

are not (al,kl)

in the ecuation

@

_'+ a e =ku.

3.1.4 Phase Plane Analysis

Let AR_,R2, ... Rn be regions defined in the error-error rate

plane. A control policy u(_,e) is then determined by specifying a control

value (I, O, -I) for each region in the phase plane. Thus, for a given

set of regions R1, R2 ... Rn all possible control fur_tions could be

enumerated,

( 39

1966010296-043



Selection of a new control function by exnminatJon of _nll_:_eratod

functions becomes impractical because of the l_rge num_:erof fanctions

which are created by only a handful of regions. For exalr_le,with three

control values and ten regions, there are 310 control functions to choose

from.

3.1.5 Control Policy Selection

The regions are defined by a set of binary variable. This,then,is

the input space to the trainable logic. The output space is the set of

control values (I, O, -I). The mapping of regions to control values is

accomplished by monitoring of the human operator who, though he may have

no knowledge of phase space, is necessarily assigning values to regions

as he controls the system.

As described, there appears to be no reason why the initial automatic

control system should be distinct from the trainable controller. That is,

the initial automatic control system will be the trainable controller

trained to an initially specified control function.

It should be pointed out,there remains the problem of deciding when

the trainable controller has received enough training to be trusted. Its

reliability will depend on the variety of inputs it receives and the

consistency with which the human operator behaves.

4O
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3.2 M_rkovian Frocess Control_ Problem 2

3.2.! Problc.mStatement

Given a man-machine system that is characterized by its being in

a flnite set of st;ites_ let the t_'._nsitionfrom one state to another

state be representable as a stationary Narkov process. Let the transition

matrix, describ!_Jgthis o_eration, depend upon which of a finite set of

policies (m_dcs) the _._yst_,is s_l_cted to operate -n4er. We investigate

the optimizatlon of system performance through mode control_

3.2.2 Problem Motivation

There are any number of real and practical problems that can be

represented in the above framework. Any sys[,m "hich is stationary

Markovian (or can be approximated as such) and whose transition matrix is

affected by some control parameter, gives rise to questions of the best

parameter selection. To illustrate the applicability of such a develop-

ment, various specific systems will be described in a later section.

3.2.3 Mathematlcal Formulation and Review

3.2.3.1 General Formulation

The theory required for solving the above problem has, for the
cts)

most Fart_ already been developed. It i8 a logical extension of decision

theory, and emFloys essentially the same theoretical foundations. The

results, however, will be seen to be somewhat more sophisticated in

certain respects.

A system is postulated, which exists in any of K-configurations.

Let the system, in each of these configurations, be describable as a

stationary Markov process. Control of the system is exerted through
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selecting, my of the i,-config_;:.at,ivza, A control policy is a rule which

determines the configuration to b _ selected. The problem F3sed is that

of selecting an opt-_mal control policy.

In order to solve this problem, the meaning of "optimal" in regar,i

to such a system must be considered_ This is accomplished by assigning

costs and minimizing _Dc c_cected loss,

Let each of the K-,,;onfigurations involve M transition states. That

is, let t£e Ira.ositlon matrix for any of the configurations be an M x H

matrix. Assigr. _ ,.oat vector {i'.-Ceach of these matrices), giving the cost

of being in any of these M states. Hence, for configuration i, we have

the M x M transition matrix, Ai, and the N x 1 cost vector, ci. Now, as

the system proceeds through the various states (for any control policy)

a cost is acclmulated. The optimal control policy is that which minimizes

the expected loss over (!) an infinite number of time increments, (2) a

finite number of time increments, or (3) until the system aStains a desired

state. 1,_

3.2.3.2 Use of the Z Transform

The Z transform has been found to be useful in the analysis of

MarKov processes. Hence, before proceeding with the development of the

optimum control of the above process, we shall briefly review the appli-

cation of Z transforms to the analysis of Mnrkov processes.

(19)
The Z-transform Js Jefined as

_, (i)

z[f(k)]- _f(k),"k - f(o) �f(l)_'1+f(2;_�... t=o

which for f(k) - i gives

h2

!
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l-z-':']:
I I

since

E, ,] zZ (k 8f(k ljz
k=o

s _P..(1) + z,,-).",,- +

one obtains the difference equation

Z [f(k+l)] = z {P<z)- f(o)I, (2)

for P(z) = Z f(k)

,_.-',.d i z I ""- R

with

R the radius of convergence of £(k). This can be
c

applied to the onalysis of Markov processes represented by equations of

the form

--_ T --b
p(k_±) = A p(k) (3)

n

where A is a stochastic (transitio_ matrix with._aij = i for all columns

j, snd 2 (k) is the distrioution over the possible states at time index k.

Letting p(o) be the initial probability vector, then after k transitions

one has
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p(k) Qk--- p(o) , (_)

where

Using Z transforms, one can solve for p(k) in a fairly easy manner_

From the above derived difference equation, we s_e that

I i
z_P(z_ - p(o) _'= QP(z)

wherein we obtain

P(z) = (I-z-lQ)-I P(o) (5)

which converges for all !z i h.l

The inverse transform yields the general form of p(k) in terms of k and

p(o).

To illustrate this technique, consider the following example.

Let p
i ] I •

t m m I "_"

AT = I 2 3 with P(o) = ;i
1 2 _0iT -_ .

Then,
, %-1

- (I -z'iQ)'i

#

44
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I \

(z_:-,-.,-l(z.Z z-z) 1-7 ,

which by partial ['raction exT>ansion becomes.

I

,,_ ,_z -I

(]_z"l) (i___,-i)
p(_,) .-

1 -1

1

That is,

I ""2 .3
"_ r ! 5

}'(z ) = !-z-I + "_iz:li I
_ 5

_ ,4 TT_k_ng the inverse trsnsform, one obtains

O(k) --. I •

.al

where the vector on the ].eft represents the equilibrium state of the

process.

3_2_3o3 Establishin_Expected Loss for a One Co_isuration System

We can consider the analysis of a one-configuration ergodic Markov

systeR having a cost which is associated w_th _ach state of the system.

That is, we consider a system with one transition matrix and one cost
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vector. After k transitions, a mean cost increase can be determined

associated with each initial state i. Let £._k) bc the expected (mean)
1

cost over k transitions,where the system started in state i. It follows

then, that

fi(k + i) --ci + _._ q f.(k) (6)
j ji 3

where ci is the cost of being in state i for one time index. Therefore,

we see that

f(k + I) = QT f(_) + c (7)

where

f = (fl' f ' "'" f )2 m

and where

c = (Cl, c2, ..., Cm)

Since c is independent of k, its Z-transform is given by

2 (c) = _Z(1) - 1 -_ z -_c =- c (8)
l-z'l z-I

Therefore, if we let

F(z)- Z f ,

then we obtain

-_ -_ QT -_ z

or

46
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FCz) = (z I - QT)-I f(o) + __z (z I QT)-].z-I - c (9)

It',for convenience, we take

r._o) :: o

then the above equation reduces to

' QT "_
(io)_(_.) : z c'- z-Z'I- (z I- )-I

3.2.3.4 Establishing Expected Loss for a M-Configuration Sys _m, With a

Given Control Policy

As described earlier, a control policy is a rule for selecting a

system configuration. Let this rule depend only upon the state the system

is in. Then, each control policy describes what is equivalent to a one-

configuration system whose transition matrix is a composite of those assoc-
iated with the M-configurations. That is, row j of this matrix is selected

as the jt__hrow of the transition matrix for some one of the configurations.

The expected loss for this control policy is then established as described

in section 3.2.3.3 for a one-configuration system. The optimal control

policy is then the one that yields the minimum expected loss.

Consider, now, some selected policy u (which may or may not be optimal).

After a large number of trials, one expects the system to settle down to an

equilibrium distribution over the system states. This would imply that one

could establish a mean cost per transition, L, for this control policy.

Indeed, it can be shown_8) that for large k,

f(k) - kL+ v (lZ)

27
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where f(k) is the expected loss vector, L the mean cost per transition

vector, and v some constant vector° The components of these vectors rep-

resent the starting state, and the time-index, k, represents the number

of transitions away from +his start. If the system is ergodic, then the

components of L can all be shown equal.

Applying the results shown in equation (7) to equation (ll) yields

£ QT
J

= + c (12)

Since Q is stochastic, this reduces to

L + v = c + Q v (13)

Subtracting

(vn v v ..., v )T T, n, n, n = Q (Vn, Vn, "'" Vn)T

from both sides of this equation yields

_b .A T
L + w = c + Q w (lh)

where

w = (Vl-V-,V2"Vn,n"'"' Vn-]'Vn, O)

are the starting costs relative to state n. Since w involves (n-l)

unkno_ms, and since L invclves only one unknown (the components being

equal for the ergodic case considered here), these n-equations are suffi-

cient to solve for both L and w .

?
_ 48
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._._ ,_t,_t_Li:mIrlL,:_nOpti,lalC'mtrol Policy for an m-Configuration

_.ystom

[,,r; _n's principle of or:timalitycan now be used to establish

an optimum c-ontrolpolicy° Let the m-configuration trsnsition matrices

be A] A2 ..., A The procedure for establishing the optimal control

policy _.s new :,_ f":_!lows :_

, ¢' _Ta _lcc. _n _rbitra_ control policy, u1.
..b

b.  a[, ate L(u1) and (Ul).

c. Form the vectors

Zj(Ul) = cj + Aj_Qu l)

for each configuration, j - 1,2,..., m.

(Note that c. is the cost vec ._',_ for configuration j and.J

that it hss components cij corresponding to the cost of
leaving state i. )

d. Define "rainZ(Ul)" as a vector whose ith component is the same

as that of Zj(Ul) , for some j, and which is the minimum over

all the other it-_hcomponents.

e. Form the new control policy, u2, as the one that selects con-

figuration j when the system is in state i if the ith component of

"_fi.n Z(Ul)" was obtained from Zj(Ul).

f. Repeat this process, solving for L(u2) and w (u2), forming

Zj(u2) , determining "mln Z(u2)"p and then establishing u3.

This process will converge rapidly to an optimal policy(18_his

can be assessed by noting the convergence ot' L.

49
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3.2.3.6 Policy I%-tr,rmination b,ySOBI/'_as _ Stochastic Computer

_rt_ir,p]r-._,cr%the r,receed.ingcomputat,ion process, we sh_ll obtain

the z'_luti:m,of a set of sinultanoous equstJons _s an itoraldon Frocess,

where "Lb. f'or':,_:_.L_,_,..cits a set of linear difference equations. The cri-

terio_ for conw_r6_mce Lo a solut._on becomes identical to that described

Jn sh_,w_n_,: ,;'..'j)i".i!" ,:.±' o ] ime_,r autonomous, r,t_h order plant. Because of

its approp:_'ia',en,':s_ _,t', t,b,-. T,rob].cm discussed here, this section was not

included under the section on comoutational techniques.

Consflder the _ystem of equations

- (15)AX = b

Let

A = E-H (16)

where E is a m_trix which is conveniently inverted. Then the above

becomes

Ex - Hx + b.

--
The iteration process consists of inserting an initial _stim_te vector xo

on the right and solving for_designating it x1. Thus,

__L ._%

E xI = H x° + b

Repeating %hi_ with x! gives

.dh _-h _.h

:' E x2 = H xI + b,

etc, so that in general we obtain

i
• m

1966010296-054



_ -J_

>k+l = H xk + b (].7)

There forc

-_ E-I -'_ -I "_ "_ "_
z _- H xk + E b -- F xk + S (18)k*l

whe_,

and

:,_.E'Zb (20)

Considering the vector difference

Xk+ 1 - xk - dk ,

interpreted as an error-vector. Since

Xk+ 1 - xk = F xk - xk + s

..ira ...Ira

= F xk - (H Xk. 1 + s

F (xk - i),

it follows that

dk ,:F dk_1

(21)
F2

dk.2, etc9

51
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wherein

...._. =F k "-_dk do (22)

do - xI - xo.

For large k, Fk ._s_pproxi_._T_elyk_ where < is the eigen vector cor-

responding to the 2at _st e_gon value k, .• g. _ The accumulated differences

will converge _o a solution if _ _ 1 (lie in the unit circle).

From equation 18, we obtain the iteration process

+ Fx
xI = (I * F) _'_= xo o

-_ F2 -_ __x2 _ +F xI=(I+F+ )o =x °

@

xk ,F N+l o

This recursion relation affords us with a simple means of solving a system

of equations• An intelligent choice of E insures convergence to the solu-

tion, using the method described in this section, or possibly one of the

inversion procedures described in the computation section•

Return now to the problem b,ing considered. The set of equations in

the policy iteration routine (section 3.2.3.4) the computations have the

following f_rma
52
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_ c _ w (25)
n

t
That is, in oTTapd_:] forT.,

1 _I Cl all a12 ... 0 1

1 _ 2 c2 a21 .... 0 lw2

i. . _,- = . + 0

o Wn_ 1 [ Wn'l

1 0 L Cn anl °" "" "" 0 0

where the matrix used is derived from A by replacing its last column with

zeros. Tbes does not change the equation. Obviously, the eigen-values

of this new matrix are less than I. This equation can now be rewritten as

]-_'II -a12 . . . 1 w I c 1

-a21 I-a22 . . I w2 C2l
B

I iWn_l

-an! . 1 L cn

or

A w - c (26)

Let E be the matrix:

1 0 0 • • • i i
I

0 1 0 . . . I I

IE B • ° • • • • @

I

!
0 0 . . . 1 I,

_" o ..... i _ 53
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By 4nsprction, :,_t, o!,t-dn ils, ir, v,'r,'ic .,,_

i o o .... -I

0 1 0 .... -I

-I
D • • • • • • e@

0 0 . . . 1 .-I

0 "

]
_tting

!
A =E+H

we see that

I 0 . . I all'al2 " " al, n-l_ 0

0 1 _ . .-I a21 ......... 0

-I
= - E H = .... . . .... . ....... (27)I

oo. i.-i ........... • I

O..0 1 a ..... a 0 i
rl n,n-i

That is,

P

all-anl al2-an2 . . . 0

a21-anl a22-an2 . . . 0

F • . . . . . . . . . . . . . (28)

anl an2 . . . 0
i

5_
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]_l C_.FQ

n-1
! -- !

aij :--__-0 , _=I aij _ I for all i

're,.,:.c,_nr_owsubstitute the above relation into equation 2[_to imple-

ment the iterative procedure for policy determination.
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3_2..3o7 Sp_c-lf')cS?,rstemsfor 1_,p-elication

As mentioned earlier, many systems in n,_ture c:_nbe analyzed in

the M_rkovjan framework_ It should be note4 also that often_by a modest

extension of the state space, natural processes which arc Jtherwise not

}_arkovi.ancan be put into the Markc_ framework.

The techn.doues yresented here could utilize TL._as either (a) a con~

trolled proce,ss9 or (b) as the computational element which determines op-

timum policy .f'orcont-rol of a naturally occurring Markov process.

a, Using TLN as the controlled process, we have an analytical

method for determining tb_ effectiveness of various training rules in

directing _t to an absorbing state_ with costs associated with temporary

presence in each state during training, and costs associated with the use

of each rule.

bo For the optimum control of Markov processes we use TLN as a

stochastic computer to compute_ on or off line, the control policy. For a

regular, non-absorbing, process the theory allows us to compute a state

dependent control policy which minimizes mean cost/un.it time. (Fig. 3-3) .

Listed below are some examples of oossible Markcv systems. It is

likely that numerous examples (not included in the list) exist, for which

investigation would be profitable.

io Regular processes

a. Regulation of closed loop (linear & non-linear) conbrol

systems with random inputs. (Fig° 3-h)

b. Inwentory problems with stochastic demand.

c. Regulation & control of ecological processes°

56
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random

i

%

Figu;._e 3-I_ Closed Loop System with Random Inputs

58

1966010296X-004



_ ,,,_.)rbii,'g i r,,)cesses

•_, Co,.i:ro) systems with random dfisburbances which lock on t,o

the referent": '..,.i':n_;] wh_l wii-,hJn a prescribed error range (absorbing

st:_'tc).

b. .Ifthe reference signal is noisy_ the above problem becomes

or_e of co_r,puti %[ :._.r_or:.",:,-_mnlp,._r_:uit trajeutoryo

c. Reli:_biljty analysis of' systems with machJ.ne breakdown and

rep]acemer_t or repair.

3.2.3.8 Sim,.,lationProb-t.em

For a simulation study_ a regular MP,rkov process will be simu-

lai,ed on the SDS-910 Computer in Fortran using random number generation°

A set of control actions will be available each one of which goverps the

behavi,.,__ of the process when its respective control action is being imple-

mented

The probl_.,mwill be the determination, by TLN_ of a control policy

which will minimize the mean costs/time where the cost structure is rep-

resente4 by a cos[ vector associated with each transition matrix.

The ensenfble of transition matrices could represent the response

of the human to r:ongigurations and displays in the control system inter-

face

The TLN w.i.l.lcompute an optimal policy (by Morlte C_rlo) based on

th_ mathematical input data. (See 1._ig.3-_.)

]. Objective

_._uasure s[_ee__d and '_'"elf](,leno_,of TLN as a computationa] element

foz'comput, ing optimum policy.
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_ 3 ,_;_;/c.:; _,_c-.:_-ion l,ia_J.nt_ (Problem 'z3).

3.3, ]- l-'r,,_<_ .u :,to, _.,er,_:_at

Th_.:s ,)s'ob.::-,(, J_,_,the appl.icasion of trainable logical net_,,,orks (TI.,'.T)

bo the on..,li.ne :s,;'l',/_J.on of Bayes decisions° The specific decision problem

is the r'c,ubln_ of si_.,_ala a].ong one or more paths. As shown in figure 3-6

the c_J.gnal..; at-o. [.s',:,c.:."_ ,4 _ , ,,-,_,e,., t.o _,orm inputs acceptab:.e to the decisJ on

comput_er,

The (h_,.'i_",ion computcz: (]ebermi;:c _. what outout chann_la ore to be

activated ._,.ccor,din_.7 to the lowest cost Bayes criterion° One o_i.pu_ ;,ath

includes an e;.-ternai evaluatJ on device that can modify the cost matrix

contained in h.'te. decision computer°

3.3,2 Problem Noi_ivation

As an example of the type of system treated consider the problem

of processing" medical and/or environmental data in a space vehicle mission.

The various p,,_,sibleacbions may be to telemeter to earth, record data_

direct data to disp/.ays_ and combinations of these and other actions.

For Bayes decisio_ing it is necessary to establish beforehand the

probabilities i)hatthe process is in a certain state given the input

signal. For instance_ one method of classification of EKG waveforms

involves the identd.ficatmon of four pathological states: inferior

myocardial infa-ction_ right bundle branch block, and left and right

ventricular hypertrophy as well as the normal state°

The use of '_PLNas a decision performing device recuires two

conditions.

(I) An estimate of costs of taking each action is known and is

reasonably accurate. '/'hiscost matrix can be updated periodically by

| 6a
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the astror:aut cr ground co_mand in the iJ_ht of _evelop_ents :hu'inq a

mission.

(2) A _'ea_onab'lyaccurate estimate of the _rooabilitv distribution

over the state3 nf nature (process). This data results from }_,KOo_- other

data tai',enon pre%rious missions, in simulation runs, on other personnel

etc. I_ is z.ea_cnabie tc assume, bhat sufficient data w-ill be available

to bas_ a prubabilis_ic estimate of the state of nature.

Two gene:'rd methods of pattern recognition are possible, parametric

and non-parame_2ic 5echniques. The consideration3 above apply in _eneral

to parametric patte;-n classification techniques where the _tates of nature

(pathological and normal condl_ _ons of tn_ heart etc.) can be adeouately

described as population classes, each class represented by a mean vector

and covariance _s_rJx. An input can be classified on t}lebasis of a set

of probaoilities as to which class it belcn_s.

_t,,_r da_a (such as life support parameters) representin_ scalar

variables would be described by the mean and variance or other parametric

information.

In the system block diagram figure 3-6 , the control functions may

consist or"ottmr actions besides those listed above such as: obtain more

information on the pro_ess (man or machine) by further measurement. Such

an action may be the _erformance of a blood pressure test.

Feedbaak from grouted control taking the form of the physicians

conclusions draw_ *1,om telemetered data could form an adaptive loop for

updati1_ the distrzbutlon utilized as inputs to t_e Bayes decision device.

In the life s_pport system the decision space can be t_ought of in

several ways, one being different degrees of control of the environment
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(:;ucllc.:::,c,:,._.:",.L_,_'_o_ o× ,._cn?[0,7rn oe control).

The Bayes d,_cision (strate_.y) consJsts of-line a_plication of a

strate_l, w_ctcr a ,,¢hichproduces:

T m.__ .@ n

_,,'n e • M a _ ei =I [ a. --],a -_O

Where lJjis an n by m

cost matrix and -*"e l,:.an as&u:r_ed(a _,_.riori)distribution vector si._nifvin_

the state of nature: "chevalue of tb_ P,ilJnear f_rm shown above for a

--o --)
particular e, a _n_ P'.i,s the expected payoff of tne decision.

_ a

mil' mi2 in I

m21 , ......... a

[el' e2' "'" e]m . . . . . . .2 = p

mml .........m wun an

..d

-_ -+
Thus we wan5 to select a pure strate_T a (a vector ,.Mth all elements

zero except for one element e_ual %0 unity) which will minimize the above

. --9
expression given ':_p:,iorl_'kno_,'ledg_o_ e.

We can illustrate the concept best b., considerin_ the fol!o_in_

example:

since 2

e i

61,
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1

e - i-e
2

-a

i 3 i 2
i

a

3
. j

T
where & _'_tq_.,.i_-kar:_Jwhere;t_ is the vectcr transpose of _ from matrix

Thus

[a a2 31

p -,

e, 1-e 1 a : 2 i

-_ _T
1 3 =e M a =R

3 l

The linea:'combination of vectors (columns of M) sho',mabove in

parenthesis is cor]_onlyreferred to in decision theory as a convex hull,

we deslgnate this vector=_.

Thus we wish to minimize the dot product e . b_ through the selection

of the b_st a.

Thas for an ass_,m_de--[_, ,_]wehave

] --'-,a --i, O, O for the Bayes decision which yields mine . S.

The optimum a was determined by constructing the perpendicular to

--lb
e and sliding it,until it intersected the first vertex of the area_,(Fig 3-7).

The equation of the perpendicular is e . s = C. C is constant, Shus the
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Figure 3-7 Construction of Bayes Decision
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where C are costs '" hwn._c_,an_e over C&(J .A1 (normalized to I).
ij ij-

We have d. as %he probability of a system being in the ith state ofI

nature thus dI + d2 + . . • + d + • • • + d = I .i m

The V then represent the Bayes risk function where V is the dot
i . i

product of d and C=_ = [Cli, C2i, ._. Cmi]

= C . d
Vi i

and the Bayes decislon is simply the minimum (owr i columns) of Vi.

The implementation of this process usin_ Monte Carlo and statistical

switches can be realized by the scheme shown in figure 3-8 which presents

a simplified case of h states of nature with a:sociated probabilities

dl, d2, d3, dh and three possible actions (decisions) with associated

risks V1, V2, V3. The operation consists of a matrix-vector multiplication

by linear combination of rows:

a

ii8 o 1/8

[118, 2/0, _18, 1/8] 318 6/8 1/8 : 1/8 [1/0, O, l,SJ

jib 3/8 318 + 218 318,_!8,_18+...

1 318 _18

-{vl,v2,v3]
The cost entries are represented by probabilities placed on the K

level statistical switches in front of t_e OR gates (finite 3-8 ) where the

bias is euantized to I of K levels. The probability distribution vector

d-_is represented by an extra set of statistical switches placed on the

output of the mlnterm generator. Each minterm is activated se_uentially
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Stst_st_cal
Switches

--_b_ 1/8
l / 3z'_, (- .......

AB i_b / l../8 I 3/8 Counter

' L"-. ' v11 _,o . 31_ __J 1 ,
'_---" "...... I ....... -/

d.

1

............. j 0

......... / 6/8 :,
.... _......... / .3/8 ounter

i-l-!.3.
!

) _I .i/8

. I _ it/ 3/8 _ --Uounter

_/8 __ v3

VI V2 V3

d_ _/_:__/_
d2_,_/813/81_.V8!

Figure 3-8 ' Bayes Decision Computation
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by an artificai!y _enerated environment (shift register with a sin_!e

bit recycled) where one minterm is activated a number of times commen-

surate with the error variance desired on t_e output of each OR _ate.

The final contents of each counter (V) then will be the sum oi
__ __ J

all products in the dot product 0 . C where C = [[Clj' C2j - " - Cmj]J

the counter containing the sr_allestnumber yielding the minimum Ba_ges

risk.

7O
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)_.0 [,,L,.CL,oY,,_;S

_i.l TheoretJcal Studies

The theoretical studies have included the defining of a performance

control monitoring system, development of some necessary mathematics for

such system_-_,,_ndthe application of statistical switch techniques to

performing Mon_.e Carlo type computations.

h.2 Ap_li,_ation Pzobiems

Three pzt,b!ems have been presented, each emphasizing slightly differ-

ent aspects of performance control systems. The next phase of this pro-

gram will be the progra_mling of cne of the problems for simulation on a

digital computer.
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APPENDIX A

LEAS..SQUARES PR_DICTICN
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{

.'..... e ne3n value E<qj.), L_;,%n_ mean va.tu9o.=.:gwen by

S(_. '__.: " :' :,x_--, e)

" ' ..... ¢"_*t'aC" gk.V';$4. "

] _- ._., ._ .::< '¢r,_];'_, 9 is & v_.(..tcr :.._' -.'.*" _-"-'. ..... e ....... a_

& _. ; G,-'.,a" g ":,:-._,,_"_'slstzoesh!.p eT,tabi_ {,he "" " -

o-' oc:25r,]-::.;);,:'-'_,o.a¢,1,i,r,,] m:lt't..,..:.""advance of >.ensal'et,.e:lt8 xz, The problem

.....t,-,,-_,4...4-......._,.-,e .:,_t.te:_tn"_o ,]x'c g{veu l.he l,,l_"_" c,f ;;be Iua.,_',_a.ora_,-': . fo We must

.',s+. ," ].!ah ".",l"-_ best e,-" ...... ,......... _.....,r,_,_of the p._r_tetero @, it_ 6i_tribu'bional

_ _m: _'¢.mg-.tingal_orit._ar_for its updatJa'agwith t_e.pz.<,.gs_,ie,!, _ ._,, .... ,.

Let. !,,_: ..... a ,,.0:,_ " t_:,e_' _ "''..m_a.,._eop_.._m¢.zac_over n ....d_ca_ be >epresented by the

(? v_ci.or

= (ql, "'°,%?

_,:eprob.!enbecomes especially simple mow; "__. we take the above referenced

(]._)

_'_ e AT_'_/ _

i, ra

J " i, 2, ..., r

A-2
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= (el, e2, ..., %)°

That.ism the perfonn_r,r_ep_=dlct_o for time index i+l is gi_renby

r

j=l

= ci"._i + ai.oe2 + co° + air @r

= gi_x-;el + + ... + gn(_)e r

fC_" 3. = -A9 "" *e

Select _h_: '_._e_t_' _tim_te oz_ Tk_ep_rameter@, @_ as that which minimizes

the _um of _e _c_,A:_re.sof ;,n_ devZ_r_.i;m of _._q) from the actual

measuremez:t:_q,

That is_ let

-

J To minimize R2, I,_5_,herar:_ of A be r, whereby i_ can be aho_cn in a

s%raigh%-forwarc manner (_e%_ing i_ derivative wi_h reapec_ to q equal

i._ to the ,,ectorO_ tha_ one mu_t select

A-3
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_" T -1
8 = qA _A A)

(
(Note t.h_tnatrix A is not a square matrix, and _mt ATA is a non-

singular s_._nmetricr x r matrix).

In _his csse, one obtains

R_ = .eA T q-@A _

-_ [I-A(_ T A)'IAT]q T

A theorem b_,Mark_: state_ that if we take the components of q as

normally distributed with common va__ance _" 2 (s restriction %hat's

convenient rather thsn necessaryj

then

^ -( (i) @ 0 N );,. 2 (ATA) -

_" n-r

(,".) 9 and _2 2 are indepm,de_'t,

where _is ,sod t,, ' " " [ ]oeno_e "diatr__ou_edas'; _:'.., N a, B used to denote

"normal with mew, a mud -_arianee-covarianceB'), This result is o_ interest

to us here in that one obtains the distribational properties of the

prediction, requireo for decision theoretic conslderations,

As an illustro%._.onlet f(_,_) be sume arbitrary function of, say,

three variables, Le_ these be the three me,a,surements; Xl, x2, and x3,

The best second-order fit of E(q_) is of the form

A-4
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_h_re @ =-- (el, e2, ..., e23)

is evaluated as above using _he mstrix A given by

A 8

in) 4n) (n)X X_ • O • O • • • • • • • • • • • • • • • • • • • • • ¢
J 9 j

The previously described procedure now yxelds the least squares fit of

the specixiad form.

With n _ r collections of data (consisting of the n rows of the

matrix A) une c_n readily establish @. If the distribution of q is known,

one can also establish the distribution of e. For the time being, however,

we'll consider q as nozmally distributed. Con equently, as n gets larger

the elm_ents of the variance-covariance matrix associated with e decreases

e.

approximat_- as -. Whereas this property is desired when the process
n

considered is stationary, it may not be desired in the adaptive predlctlc_

techniques considered hares

i Consider first the case where N sets of data are _,obe considered in

_i conjunction with weighting factors which depend on_ on their age. The

solution is obtaine_ by using a modified _, _, given _V
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10 0..,w20, • •

Q2 = _ . . , .
• @ Q

• • Wn

_.hc:,"_-t::_:_-_rr__:c,:<;c!ve :_3ign_._mgfao%3rs. By eenoting the weighting
,J

Q2 ___o.wqT_qWA6T e;!Wq +&_TwAsT

whereiu

'_,Q21 -- -2qWA + 20ATWA _ 0

D@ I ^e=9

Hence• _._

where (ATw A)"I exists whenever (AT A)"I exiats, (i.e., whenever A is of

r_nk r, and _ = el, o,., _r). One can again obtain the distribution in
4m,

..h..distribution of q,8 by kno_dng + _

We sha]] now consider _he computational aspects of the above, Designate

the pe_"fon_.ancemeasurements by the vector

qo " (ql, q2,,,,lqn)• / ....

A-6
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_,C't ..... ' ' ; ..... -. :.. ..... bid c.,t_.r ti',c, ;3bovr 3_ -

%

_;_c,}i,,,r'_.';,',_.nt:-,")_ Gc;J:in-tc,d %., lt:t _',C. c._'Lt'L,,i !uC_,'Stll'(_iTleFtt ltla'GT'iX

/ _ _ |

t;_ - " " _.... "" . J:) raetr.tx, _n_r'rJn_4_:,J ,4,. _rl y _,,,_ve inci_c_t_:o _hst the

sift.pieun_.mi[,l:t_.Pc;:_.,'_givc._ ri_c co the solution

_" - T An)-le. = o;, A (A

If th.__ddi_icna]._3_ obtoineo during the (n+l) st iuter_81 is

'--_......._ " .oo_ an+l,r),desigr,+_8by %be _++c,-.u+2 reg.+matrixBn+1 an+l,1, an+l,2,

then.the updated _'bes:o"e_..._t.eof parameter e is representable in

terms of the partitioned ms,rices given in the equation.

]L' _lJ
wherein

8n+l= + q B A +BT -1n n+l n+l n n+l +l •

The tot_] _ystem - memory required for this updating process resides in

the (I x r) vector q_&n and the (r x r) - matrix, An An.

For the _8ighted case, we e_tablished that for n sets of data,

_ An)-len " qo Wn An (An Wn

where

w 0 0.....

01_0. . • • •

• • • A-7
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This imolies that the weight wj is given to the square of the jth deviation,

relative to the minimization procedure. It is simplest to assume that the

relative importance of one samp]e to another sample remains fixed once it

is established. That is, once the weight wj is established, the ratio

w for all k __j remains fixed (independent of assignments of weightswj k

wi for i > J)o Un4er this asa_1_ption,we see that for time index n+l we

can write

E:n°][ .i-'_n+l" (qo, qn+l) B_+I) An
Wn ' Wn �ä�Bn+

wherein our weighted updating procedure would compute

_n+l" An+ Wn+l qn-1 Bn.1 AT _nAn + Wn+l BT+I Bn+

Noting that the up-dated parameters are represented as %

" (qo,qn+l)

An'l' 'n]'n.1
N+I "I_n 0 ]Wn+l

we see that qoWn "qo_h_ + Wn+l qn+l Bn+l

and

ATn+lNn+lAn �1- AT W#n BTn + Wn+l n ���Bn+l

A-8
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These parameters are thon used in _le succeeding cycles of computations,

yielding %+m' for all m.

The above scbcme can be readily modified in order to perform the

computation uf predicted performance on the basis of previous data without

updating. This would be useful for establishing control modifications of

the man-machine process,

A-9
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MATH_4ATICALREPRESENTATIONOF A TRAINABLELOGICALNEIWORK

Consider a binar7 logioal network with n-input variables and n-output

variables.

Lots v I v2 v3 ,,, vn be input variables
i

w1 w2 w3 o., wn be Output variables

xI x2 x3 ... xEn be combinationsof input variablu

YZ Y2 73 "'" YTn be Qcmbinaticns of output variables

I_ we associate with each of the input combinations a unit m-tuple (where

m = 2n), then any subset o_ the entire set of input oombina_icns oan be rep-

resented by an m-tuple which is a linear oombinatiou of the unit m-_ap14s.

That is_. i£ the unit m,-tuples are

eI = 1 0 00 ... O

•2 = 0 100 ... O

• 3 • O0 10 ... 0
I

eEn = 0000... i

then any olass o£ input eoabinatlone can be repreemted by m a-tuple_

l " I: xieii-1
!

whe._e x_ = 1 .tf the oaublnatlon xi is in the doe_d input met. Ot_ms_ee
t

I

x-O.

o ;
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Similarlywith the outputs

2n
!

Y= Z ¥i el
i=l

! !

whereYl = i if Yi is to be speoi$iedin the output8e%. Othe_se, 71 - O.

Now let switchesbe labeledSij so that 8ij is the oonnectionfrom input

combinationxi to outputvariablewj. For an n-input,n-outputnetwork

_ntherewill be, in general,n2n switches(i - i, 2, . , 0, and S " i,

2, .._,n). If to each of the switchesis aseoolateda value ais sueh that

aij = 1 when switchesSij are closedand aij ,,0 whenSis is open, then

inputcombinationxk appearsat the outputas y = ekA where ek is the m-tuple

oo._respondingto inputcombinationxk and A - (ais)°

The admissibleset of outputsfor a giveninput set X will be

&- &A
where Xd is the m-tupleX writtenin dlaganalform.

The admissibleset of outputsfor all possibleinputswill be

"e I "i000... O"

Yo = e2 A= 0100... 0 A=XA=A

• _I, '

n
0000, , . 1

e2

where the row S o£ A is the output oorrespoading%o input x_. The output

set is again representable as a yoo4:@_.

:

i=l ,

71 " O'i_A

D'3

.... s

i

1966010296X-029



Ex_ples

transform x to .Z-.

OlO _ lOl

i01 -* 001

ii0 _ 010

all others -, 000

Let xI = vI v2 v3 for all possiblevalues of the input variables

i.eo_ xI = 000 end eI = 10000000

x2=O01 e2=OlO00000

x3 =olo e3 = o OlOOOOO

x8 • 111 e8 = 00000001

The t_ansfoz_a_Lon matrix can be written downime_ta%el_, Eash output

oombinat,:Lon must appear as at leu% _e row'of al; ]. 8peclfleal_7,z_w i Is

the outputassociatedwith inputXl, ' so

000
000
I01
000

A- (,Ul)_ - 0 0 Z000
Oll
000

a.. • I indioa_s tha_ switoh s,.is oloNd,
_qJ
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If, instead of associating values a - (09 i) with switches; we assoelate
! !

a range of values 0 < aij _ 1, then aij becomes the probability of the switch

being closed; i.e.9
I

. _j - _ob (_ - l)
and the n-tuple

! n !

a± - _ a_jej

defines the statistical states with respect to input combination x£. The

statistical state of the total system is representable by the me,mAx: As.
!

A I - (aij)

A change in the statistical s_at_ of the system _ - _ em be effeeted by
!

changing values of alj, If values are oha_ged on suoo@oslv@ i_te,

the transformation

!

will involve at most onlw some ak ; i.e.,

!

where qk and qr are values of ak, _d

!

where Pkr is the probability of transition l_ statistical state qk _o
!

qr" If the same rule is used for deterai_ aM on 8ueeeseive ta_Aals,

then the transition probabilities are functions of 'Mbostates end the lW_

onlT; i.e.,

Prk"_(%' %)
The probabilities of Pkr then define a Marker prooe88, since th_ are fonotiom

of the states and are independent Of how the _ms azs_vod &_ 8ta_e _0

0 #

e•
' m
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MATHEMATICAL INTERPRETATION OF THE GOAL FUNCTIC_
, , ,i i | I _ i l lm I • I

Previously, when the transition probabilities for the statistical

states of the machine were being ,levelopod,it was assumed that a rule for

determining new statistical states could be found. The new statistical

orate was determined to be the old etati|_loal state ?lus some in@remental

• change and the probability of that ohange ooe-ArTingwas the traneition

probability.

Recall that if the present etatistioal state in

_. (t) •

(t+1)-and %
! ; !

then a±(t+z)-el(t)+ael(t)
l t l

or _i (t)-a_(t+i)-el(t)
!

eothatmobAa±(t)-mob(%- %)

In somewhat greater detail

, ' .] ' .J_i " _i) �ai2(t+1).. - 1(t)+a_z(_)..

" Ia_1(t �`�')I [' "I- ailCt _eCt+2) - _(t) ,,

- a _Iz(t) aa,2(t)...A (t)
!

There is no reason fo= us to expeot that the inoremente eompri_Lng ai

need all be equal, In fact, b7 making the incrementl equal, we ea.not get

to a meJori_ of the statistical states. Severer, in the abeemoo of verF

speoifio tnfomatioa about the deairo4 at,a_tet, ioal at,at, o, it is ditTtoult

m

i
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!

to see w_y any one component of _ai should receive greater changes than
!

another. Intuitively, changes A ai depend upon some measure of the aaehinees

t outputs. The measure m(y), in the simplest case, is m(7) - 1 if the aaeklae

gives _e desired output and m(_r)= 0 for an undesired eutput.

Clearly, a range 0 _ re(y)_ i is possible whloh oould be a meuu_e e81

the probability that y(t) i8 a desired output. Further, the measure need

not be on a single output combination. One might possibly use a measure

m(y') over an output sequence. However, most of our work to date has used

the following simple goal function for determining Aai.

Let Rc be a class of desired outputs. Then Aai has been the followAng

f_notion F(m(y)), a(t) of the machines outputs and logical states.

' a(t)_Aai-F [ m(_-),

! I

where c < i. Thus, all components Aalj of Aai are of equal aa_tude (e_
l :"

( but may vary in sign. A single component of Aai is _um%t

..

where, re(y) " 1 _ t)eR c

re(y)- o y(t)B_
c<l

To find the new sta_tstioal e_te we obsorTo:

A,(t,l) - a'(t) + _ a'Ct)

The question naturally arises as to what happens when & em_ment of a_ i8
!

equal to 1 and A ai(t) is not O. It ._ be reealled that, in d_ez.iva_tm
!

Of dtatistioal states, _j wu the plWbabilt_ of ologuM of _toh _e

_?

(
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The problemis only momentarily embarrassingand can be surmountedeitherby

redefiningthe statisticalstatesso that their ccmponenteno longerrepre-
!

sent probabilitiesor by allowingA aij(t)only to take c_ values such that

0 _ a (t+l)< i. The latteris chosento preserve the etatia:4calstatemm eum

concept.

In orderthat thereb_ no loss of information,the goal A_mctlon

remembers the total _ _aij(t) and adds increments Aai_ to a_ only when

o_ __ L__j(_)_ 1. Th°__ ,ta_o_ _ _Vb°d._
t

Io 1 Iai_( ) - _±j (o). _.-':"'_
4,

In practice,the memory and _he statisticsof the swltehare usually

closelyassociatedand the probabilityof switchclosureis gAvenbye

a'(S) = o _l< r

a'(J) - ",_r r <_._ (N r)

a'(_l)- I (_- r) < _

wh_re, N - N a'(O)
0

r - goal functionaemor7 capaelt7

j . N° + _ (__(y)- l) Ca- i)t

N = arbitrarynumber of eb-Atehlevelsplus associatedmemoz7

B-8
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THE TRAINING PROCESS

State Representati0n'

As was indicated earlier, the behavior of a machine at mn_ time @an be

characterizedby its statistical states and goal function. To see this more

explicitly, let us examine the s_itches associated with a partlcula_ input

combination xi. The switch involved would be Sil Si2 ... Sin. The respec-

tive probability of closure on each switch would be a_l a12 ... a_. This

combination of values is the statistical state with respect to the inn

combinationx. Frequently, it will be referred to as the statistica_ ate.i

It should be observed that a_ is not a number but rather is a funct

whose values define the statistical states.

! ! I I

ai ail ai2 ... ain

I !

If each aij can take on r values then ai can take on (r)n values.

Transition Probabilities

Letting a'(t) = qj be the value of a_ at trial t, then the transiti_

probability to so_e other state qk on the next trail becomes

Pjk = Prob ai (t+l) = qk ai(t) =

The transition probability Pjk is said to characterize a Markov process ifp

leA"any statement g whose validity is determined by aI(tl) where _ Lt_

the transition probability remains unchangedj i.e.

B-.£
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This assures that the transition probability of going from state qj to

state qk is independent of the sequence of states leading to qj. The tran-

sition probability Pjk tacitly assumes _ (t) = qj. Without thai us_ption,

the transition probabilities will generally appear time-dependent. If with-

out the assumption a'(t) = qj the transition probability pjk(t+l) is inde-

pendent of t, then the process is said to be stationary and the states are

sometimes referred to as ergodic states.

Transition Matrix
w,= t = ....

Previously, we saw the development of transition probabilities PJk from

a statistical state qj to a state qk" The total picture can sometimes be

more easily visualized by means of a matrix of transition probabilities.

P- (Pjk)

In the matrix P, the kth element of row J is the probability of _rans-

ferring from state qj to state qk

F

ql Pll PI2 " " " Pln

%
@

P-
@

q_ " " * PJk Pjn

@

% Pnl ""

B.IO
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The notation of the bransibion matrix is useful because it allows us to

calculate various parameters which describe the process and is helpful in

. claasifying various types of processem.

For example, to calculate the transfer probability from state qj the

state qk as a function of the number of trials, we observe the following:

_(m)
Let PJk be the probability of finding the system in state qk after m-trials

(l) First trial
(I)PJk = Pjk

_(2) _ Y_Pjr Prk Second trial(2) ejk r

(m-l)p
(m) _ Pj_ rk In general for m-trials(3) Pjk = r

(4) By further _ _ "J.l*O.U.C_lon

pff,,+n)=>.:j_(m)(n)
Jk r jr Prk

In matrix notation

Jk.!= [PJrJ

m m-i
= p =p P

We see then that the powers of the original transition matrix can

give us the probability of being in new states after several trials,

The study of Narkov processes is a rather broad subject and nc attemp%

will be mane here to explore the subject except as it relates direo%l_ to

the organization of a machine.
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Classification of Markov Chains

In classifying Markov chains, we visualize a process which moves from

state to state. Classe_ of chains are obtained by _quivalences derived by

restrictions imposed upon the movement from state to state.

Consider the situation where there exists two sets of states such that,

with the first set, the process can move to the second set, but, once in the

second set, the process can no longer get back to the first set of states.

States belonging to the first set of states are called transient states.

States belonging to _he second set of states form an absorbing chain. If an

absorbing chain consists of one state, then it is referred to as an absorbing

state. An absorbing state then is immediately recognizable in a transition

matrix, since it will have transition probabilities of 0 to all states except

itself; i.e.,

Pij-o i/j

Pij I i - j

The behavior of a Markov process can, to a large degree, be characterized by

the type of sets which make up the chains. Chains which have no transient

can be broken down into two types. They are regular and cYclio chains. In

regular chains the transition matrix will have no 0 entries for suffiaiently

high powers. The process can be in =ny state after a large number of t_n-

sitions. In cyclic chains there will always be some 0 entries in all powers

of the transition matrix. The process is predictable to subsets of the

chain and will move Jm a more orderly fashion from state to state, eventually

returning to its starting state.

B-12
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In chains with transient sets, we observe that i% is implicit that such

chains also contain absorbing sets. The number of distinct absorbing sets

: and their size serves to classify the process in this case. Thus, a chain

with transient se_s may contain cyclic# regular, or unit absorbing sets.

Occasionally, it is convenient to classify states within chains into

two broad classes. These are transient states and nontransient states

(ergodi_).

We will examine more closely the behavior of processes as the7 move

through the chains. First, we will consider chains with transient sets and

show that the process inevitably must leave the transient set. Seoond_ we

will consider a chain with no transient sets and detsrmine a tAme-invariant

probability distribution of states.

The Behavior of a Process in Chains
e

Intuitively, it is quite clear that_ if a process moving through a

chain can leave a particular set of states but cannot enter into the set

once it has left, eventually the process will not be found in the transient

set. To see this analytically, we recall that the probability of finding

the process in state qk' m-trials after starting in state qj is:

(m) %" m-1 l
PJk =r_ P_r Prk

It is Just the probability of transferring to state _ in m-i trials

and then to qk on the next trial su_ed over all possible _.

Letting qj be the starting state in a tr_sient set (T) _d _ be any'

other state in (T)_ we see that

Cm).c
E PJkk

B-13
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since it is possible to leave the set. It follows immediately that

(m)

Ltm Z PJk " 0m _m k

In matrix form

pm-_ 0 as m-_

The mean number of trails for whloh the prooees remains in the %Pan-

sient se_ is all qk in T, given that the starting point in state q_ is

Mj- z (l)(zpjk
m-o k

and the mean time in any particular state _ is

Mjkr (l}(pjk)
m,,o

since each transition contributes one trial. The matrix which gives the

mean time remaining in the transient set star,Lug from any transient e%a_e

bec_es

m
M-Z p

mlo

This quantity is somewhat easier to ocmpute in an alternate form

M - (I - p)-i

where P is the transition matrix for the transient states. To see that.

these forms are equivalent, observe

(I - P) (I + P + p2 .o. pro)• T- pm+l

b
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For m _ _, we have sh_ pm+l _ 0 thus,

(i-_ _!+F,__ ...em)oI

(I-P)(z _) -I
m=O

Since %h_s matrix produ_.tIs nonslngular, we may write

z _ o(_ p)-i
m=o

If a chain has no transient sets, then it is possible for the process

to get to any state of the chain. The fraction of time that the prooees

spends in each stabs will then form a probability density function that the

process will be found in a given state. Previously, we have shown that, if

it is possible for a system to leave a state, eve_tuall_ it wall. To observe

the behavior of such a system, we assume that the time average state oon-

figuration of one system is equal to the insta-taneous emsemble average of

many similar systems.

Looking at an ensemble of systems, we see that, if there exists an

initial distribution F(qj) of systems in each state F- flf2 ... £_ ... fm

where fj is the fraction of systems in state qj, such that the distri_tion

is time-invariant, then the process is stationary. For the fraction of

systems in each state to remain constant, the number of systems leaving a

gi-.enstate must be equal to the number of systems entering that s_atee

The fraction of systems leaving state qj is simp_ the product of the

fraction of systems in that state with the t_ansitlon probabili_lel %0 a_l

osher states. Thus:
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• fJ _PJk

8tnoe _ P_k - 1
k

and

_=_. __,_ % - £ p_ +_jp_,_+... +& p_

i

i i
t

:In matrix £orm for all states !

F'FP _,

_klng t_anepoee8 of both aide8 _'

F- p_F_ i
Ol'

(pT. I) FT -0

wh_oh la a homogeneous set of equat_ona in F(F = fl f2 "'" fm) and ham a

solution _Iy iS the deberttnan% of the ooeffioi_ vaniehuj £.e,w

IpT-II - 0

J

1966010296X-042



6e

This criterion establishes a neeessary condition for the distr_but_on F to

remain t_e-invariant. Clear_y, when the solutions to t_ homogemeoue el%

o_ equations has fj _ 0 for all _9 there are no transieml%..,ts! end, when

fj - 0 for at least some J, there exlat4at least one transientset.

I

B -17

(
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APPENDIX C

TRUNCAT_ SEQIrENTIALDECISIONS

C-1
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I[n2esTruncated Sequential Decision Solution

Let the loss function associated with on@ of a finite set of possible

states of nature,_Jz_, and one of a finite set of possible actions,

a _ A, be denoted L (a,O0). If one selects that action which minimizes

the e:._ectedloss after k - experiments have been performed9 then this

expected loss can be shown(8) to be given by

uk -_ ci(x1,...,_ _) �Min_ L(a,_)

where Ci is the cost of the ith experiment which yielded measureme._txi.

(If A is not finite, one simply replaces "minimum" with "infimum" over A)

In thiz expression, _ (00) is the distribution over the states of nature

and

where F(x) is the set of all x whose first k-coordinates are Xl, ..., xk.

To establish whether to continue experimenting or to make a decision
<

after a given experiment, one compares the expected loss associated with

each of these possibilities. The lesser of these two expected losses (after

k-experiments have been performed) is given by o_k. After the complete set

of N-experiments have been run, the minimum loss would be

N

_N " UN " _. Ci(5.' x_, ..., xi)

C-2
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Continuini _, .in f,h]_ _ny, or_e oh_a:in,'-; t,h_ cmnplete ,_<_toI' r';ir,i_n_:r;_rir:k.,_ nt

each sf.,_ge oF eYl,er:LmenLa't.ionto be

"¢-- LJ

N N

°
o

e

ii

o

where U is the expected loss associated with making s decision _ithout
O

experimentation, given by

_min X L(a,_)) _ (_0)
U° a_A O_e_.

The Bayes optimal procedure requires computation of _ N' _N-l' "'"' do'

in this order. At each stage of experimentation, say J, one makes a decision

C-3
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if

O(j ---Uj

Otherwise, one continues with experiment j + I. This is represented

schematicallyby the tree-structure shown below in figure C-1.

r _ 0-4
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Truncated S_quelltial Decisions with Determination of the Order of Experimentation

Because not_Jtion becomes cumbersome, the procedure is described for

the car;c el' three experiments el, e2, e3. Generalization to N-experiments

follows directly, as 4oes a rigorous proof,_ The ,_escription given below,

hewers,r, mnke:_,£or'gre-r_er clarity.

Basic,_]ly, th,? process is like that described previously. The loss

mstrix will be given by ((L(a,bO))). Let the ststes of nature, tO e

and the set of possible actions, a • A, be finite. Let the set of observa-

tions resulting from the experiments be denoted by the vector x = (Xl, x2, x3) ,

where coordinate x_ corresponds to experiment ei. The minimum expected loss

without experimentation is then given by (12)

U@ --Min E [L(a, UO)]

where _ (03) is the a priori distribution over the states of nature and

o

After experiment ei h_s be_n performed, y_elding the result x.i = xi, the

minimum expected los_ associated with making a decision is given by

Ui = rain E [L(a,00)] + Ci(x°)
aaA _ i

xo
where Ci (i) is the cost of performing experiment ei and having the results

o

be xi = xi, and where E EL(a,_0)p(_Ixi =.

t O_

(x{
0-6
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.mI 0with _hc _(t _' (x xj.) u_,c,t _,,_ i_l_Jjc'nt,e suu._:lat].on J-_ t,u_,_en oyez' t,hc _ct

-_ th
" " ' _,_"_, = x Q (The s_mibol p is usedof a]J. I:o_;,-,].,. x ........ _ coord.inatc is xi l"

generically to represent "probability".) In a like manner, the minimum

expected loss associated with making, a decision after performing experi-

ment ei and then performing ej, oh+aining results xi and xj, is given by

. _ rain E [L(a,_O)] +
U]3 a_A _ij Ci(xi)•o + Cij (xi,xj)oo

0 0

where Cij (xi,x_) is the cost of experiment ej after ei has been per-

formed and where

0

F_lx i,xj ) _¢/L

For the general case considered here, one should note that

p(_I_°,x°__) I p(_I_J,°l,_)

That is, the order in which experiments are performed can be expected to

be d_fferent if, for example, the experiments alter the state of the system

considered. However, this procedure is actually required (in general)

whenever these probabilities are not independent.

The procedure at each stage in experimentation is to compare the

expected loss associated with stopping experimentation and the expected

loss for the various continuations. As before, the various ex?ected

losses are established by first computing

c-?

#
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C_123 = U123 c_231 = U231

c_ :_2= _J132 0_312--u312

From this, one computes

_13 = smaller _U13 ' _13 [_132]1

Then one computes

_i = smaller {U1, E_ 1 [M[!?], E,_I _(.13]_2 " smaller (U2, E_) 2 _1/_21], E_2 _23]

Fin_lly, one establishes

One can note that O( ijk is the expected loss associated with perform-

ing experiments i, j, P -- in that order. The expression @(ij is the

smaller of the expected losses associated with stopping or with contiming.

Hence, it is the minimum expected loss (corresponding tn the minimum

expected loss procedure). This argument is repeated for _i and for _.

1966010296X-051



By this argument,,on_ se.esthnt 04,_ Js the minimum e_,octeclrisk 3_rJor

to experimenting°

To utilize this procedure, one should decide without experimentation

if

If this is not so, and

then one should perform experiment e i.
o

Having done this, one obtains the result xi = xi, and inquires if

o o)_..,x.)= Ui(x%.

wherein one should decide without further experimentation. If this is

not so, and

then the procedure calls for continuation by performing e j, and etc.

This is illustrated by the tree shown in figure C-2.

A much more formal proof can be argued on the basis of showing that

the expected loss for any other partitioning of the outcome space into

actions or experiments will be higher than that described above. This has

been accomplished, but owing to its lack of heuristic appeal is not in-

cluded in this report.

C-9
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